VTT Technical Research Centre of Finland Ltd

VTT ProperTune™

Enabling Integrated Computational Materials Engineering
for Businesses

— : /N .
www.vttresearch.com/propertune

! D e S

p—



Contents

Brief introduction to core concepts of “VTT properTune”

= Typical uses & how projects make use of “VTT properTune” in
R&D&l

» 2 industry use cases:

= Design of a new wear resistant steel (in collaboration with
ArcelorMittal)

= Optimization of damage tolerant composites & microstructures (in
collaboration with Caterpillar)




EXAMPLE: Applying VTT properTune to Modeling of
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VTT properTune as a tool for “Integrated
Computational Materials Engineering”
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Typical examples and uses of “VTT properTune” Vg 7
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Thin films and coatings Composite/Hard materials
TiN, DLC, MoS2, TS, laser, welded coatings Cemented carbides, cermets, PM materials and
composites, rock materials

Metals Soft materials

Wear resistant steels, very high strength Nanocomposites, polymer composites, elastomers,
steels, steels for machinery, welds, dissimilar biomaterials

metal joints, copper, cast irons, additive

manufacturing .
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From material
microstructure to

full scale components
and systems

Tools to create the microstructure:

SEM, FIB, EBSD, u-CT, TEM, APT

Tools to characterize the properties:

Nanoindentation, AFM and SPM for mechanical
property mapping

Tools to validate the models:

Laboratory or component/ system level testing
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Use case 1: Design of a new wear
resistant steel

(in collaboration with
ArcelorMittal)

o

ArcelorMittal



Microstructural modeling: model generation

Merger of advanced
characterization and
modeling means
provides quite a
realistic description of
steel at the
microstructural level

=

Martensitic steel microstructure

Hierarchies, such as block boundaries Computational microstructure

(green) and packet boundaries (red)
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Microstructural modeling: model generation

EBSD 3D microstructural model geometry from a stack of 2D images
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Scratch test models, FM450 fully martensitic 24 % s &
grade
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FM450 microstructure design with single
asperity contaCt Reconstruction Modification
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FM450 microstructure design with single

asperity contact: load carrylng capacity
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prior austenite ratio relative
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alc = 1.0 (calculated 1.5,
1.25, 1, 0.85, 0.7, 0.5, 0.25)

Two effects : i) microstructure morphology becomes more
distorted and pancake like, ii) strengthening/hardening due
to smaller microstructural features

Deformation and
followingly most likely
wear mechanism or

appearance changes
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Testing of new steel grade(s) by TUBS in
full scale wear test arrangement

ArcelorMittal

The tine ran typically for some 100-200 km in a “tillage
simulator”, roughly 8 m diameter track where the soil/abrasive
characteristics can be controlled and adjusted.
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Testing of new steel grade(s) by TUBS in
full scale wear test arrangement

_ ArcelorMittal
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Use case 2: Optimization of
wear resistant composites &
microstructures

(in collaboration with
Caterpillar)

CATERPILLAR



Models & different analysis cases 4 % 1 &

= Model types, two microstructural
regions of interest:

Coating contact surface
microstructural model

Coating-to-substrate interface
microstructural model

= Wear load cases:

Compression, indentation, scratch
test

= Erosion wear (small abrasives)
» |mpact wear (larger abrasives)
Steel ball impact (validation)

EHT = 20,00 kV Signal A = AsB. Date :25 Sep 2015

2 pm
H WD= 87 mm Mag= Z2O0KX 1501738 %

E.g. carbide and boride
containing composite

microstructure with martensitic
matrix

{ Diamond tip +
- microstructure

Coating
contact
surface
microstructural
model layout

Scratch test

Coatlng contact surface m|crostructure Coating-substrate interface microstructure:

Erosion wear
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different energies from 0.5 to 2.2J) performed — Experimental results are used to
validate the models

« Ball velocity recorded with high speed camera just before impact

 Craters analysed with 3D-profilometer and more detailed analysis performed with
SEM or FIB-SEM

1 p X1 528x3! 1511 3.080s
MEASURE @ 5.90mm ol—YM PUS
- 1) 59.01m/s
Linear

pn——
10:37:19:am 15- Jun-15
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Verification case via impact wear like loading

3, Mises
(Avg: 75%)
+2.093e+05

+2.000e+02

Steel ball impact test for simple validation of the model, model maximum remaining displacement for
experimental impact velocity and angle 58 um, which is well in line with the experimental results (considering
scatter of both experiments + models, and the fact that in current work still utilizing 2D modeling). Experimental
results between 43 to 53 um

12/07/2019 19



5. Mises

(Avg:75%)
+1.607e+04
+

Accelerating Voltage|Spot Size[Magnification|DetectorfWorking Distance| 11C0876
20 kV 4,2 20 x SE 14,3 mm —1 mm—

Impact of a small abrasive and
microstructure (“local” hard
granite)

Impact of the small abrasive on the surface at 15 m/s, equivalent stress contours
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X-Ray Tomography of Granite sample
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Summary of results for sliding abrasion agl
erosive & abrasive conditions

Equivalent stress
contours

i a A L: i ’ i o 3
=i Model mlcrostructure E

Contact with small abrasives ~ erosion.
Impact velocity 15 m/s, angle 50°

LT A

Equivalent plastic
strain contours

1st principal
stress contours 22




Modeling abrasive wear loading in 2- and 3-

bOdy CO ntaCts Modeling abrasive wear loading arising from

2- and 3-body abrasion.

var

Wear resistance and the “collapse” of a rock column and a velocity of approx. 50 m/s
at a nominal angle of 50 degrees.
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Modeling abrasive wear loading in 2- and 3-

body contacts

Modeling abrasive wear loading arising from 2- and 3-body abrasion.

Wear resistant plate moving laterally with a velocity of 10 m/§:

TZIO7 72079 24



Summary: Comparison of impact resistance of 1/‘—',17.
two different microstructures

First principal stress
contours during impact

Y, #

Low heat MIG: greater
fraction of BoroCarbide
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v = 31 m/s, angle 50° : identical loading
conditions for both cases

Vecalloy 700, low heat MIG Vecalloy 700, low heat MIG
(microstructure 1) (microstructure 2)

Vecalloy 700,
standard MIG

Low heat MIG max
stresses ~ 30-40% Low heat MIG exhibits greater

stresses in the BoroCarbide phase

reater than in
9 due smaller W boride fraction

standard MIG

Greater W boride phase fraction
has a beneficial influence on
impact response 25
- OUTCOME: Impact resistance retained, resistance to abrasion (G65) improved by 40%.
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