VTT Technical Research Centre of Finland Ltd

VTT ProperTune[™]

Enabling Integrated Computational Materials Engineering for Businesses

www.vttresearch.com/propertune

Contents

- Brief introduction to core concepts of "VTT properTune"
- Typical uses & how projects make use of "VTT properTune" in R&D&I
- 2 industry use cases:
 - Design of a new wear resistant steel (in collaboration with ArcelorMittal)
 - Optimization of damage tolerant composites & microstructures (in collaboration with Caterpillar)

EXAMPLE: Applying VTT properTune to Modeling of Wear Damage and Cumulative Wear

VTT properTune as a tool for "Integrated Computational Materials Engineering"

Thin films and coatings

TiN, DLC, MoS2, TS, laser, welded coatings

Metals

Wear resistant steels, very high strength steels, steels for machinery, welds, dissimilar metal joints, copper, cast irons, additive manufacturing

Composite/Hard materials

Cemented carbides, cermets, PM materials and composites, rock materials

Soft materials

Nanocomposites, polymer composites, elastomers, biomaterials

www.vttresearch.com/propertune

From material microstructure to full scale components and systems

- Tools to create the microstructure:
 - SEM, FIB, EBSD, μ-CT, TEM, APT
- Tools to characterize the properties:
 - Nanoindentation, AFM and SPM for mechanical property mapping
- Tools to validate the models:
 - Laboratory or component/ system level testing

www.vttresearch.com/propertune

Use case 1: Design of a new wear resistant steel (in collaboration with ArcelorMittal)

Microstructural modeling: model generation

Martensitic steel microstructure

Prior austenite grains reconstructed

Hierarchies, such as block boundaries (green) and packet boundaries (red) 12/07/2019

Computational microstructure

Merger of advanced characterization and modeling means provides quite a realistic description of steel at the microstructural level

Microstructural modeling: model generation

either statistical or directly imaging based model

Scratch test models, FM450 fully martensitic grade

+2.250e+00+2.000e+00+1.750e+00+1.500e+00+1.250e+00+1.250e+01+5.000e-01+2.500e-01+0.000e+00

FM450 microstructure design with single asperity contact: load carrying capacity

Testing of new steel grade(s) by TUBS in full scale wear test arrangement

ArcelorMittal

Technische Universität

The tine ran typically for some 100-200 km in a "tillage simulator", roughly 8 m diameter track where the soil/abrasive characteristics can be controlled and adjusted.

Testing of new steel grade(s) by TUBS in Technisch Universität Braunschwe full scale wear test arrangement **Arcelor**Mittal **Relative Mass Loss** Wear Rate 0,6 25,0 Difference Х X approx. 2-2.5 0,5 20,0 fold in wear current grades rate Wear Rate [g/km] رو من 0 ۴ Mass loss [g] 15,0 0,32 \times 10,0 0,31 0.30 new grades 5,0 0,17[×] 0,17 0,16 T 0,13 0,0 0,1 100 125 25 50 75 0 0 Distance [km] С F G _ AT450 FM450 RA900 В The "properTune" Material ••••• G •• B fully Fully Retained martensitic **Autotempered** martensitic austenite grades, B, C, AT450 **FM450 RA900** F, G

Use case 2: Optimization of wear resistant composites & microstructures (in collaboration with Caterpillar)

Models & different analysis cases

Diamond tip +

- Model types, two microstructural regions of interest:
 - Coating contact surface microstructural model
 - Coating-to-substrate interface microstructural model

E.g. carbide and boride containing composite microstructure with martensitic matrix

microstructure Coating contact surface microstructural model layout

Coating contact surface microstructure:

substrate

coating

coating

Coating-substrate interface microstructure:

- Wear load cases:
 - Compression, indentation, scratch test
 - Erosion wear (small abrasives)
 - Impact wear (larger abrasives)
 - Steel ball impact (validation)

Validation and performance tests

- Steel ball and WC-Co ball impact tests with different impact energies (3 sets of 6 different energies from 0.5 to 2.2J) performed – Experimental results are used to validate the models
- Ball velocity recorded with high speed camera just before impact
- Craters analysed with 3D-profilometer and more detailed analysis performed with SEM or FIB-SEM

Verification case via impact wear like loading

Steel ball impact test for simple validation of the model, model maximum remaining displacement for experimental impact velocity and angle 58 μ m, which is well in line with the experimental results (considering scatter of both experiments + models, and the fact that in current work still utilizing 2D modeling). Experimental results between 43 to 53 μ m

12/07/2019

Modeling results, dynamic impact analyses

Impact of a small abrasive and microstructure ("local" hard granite)

Impact of the small abrasive on the surface at 15 m/s, equivalent stress contours

X-Ray Tomography of Granite sample

Summary of results for sliding abrasion and erosive & abrasive conditions

S. Misee (Ag; 75%) 1 000+00 2 225+00 2 500+00 2 500+000+00 2 500+000+00 2 500+000+000+000+000+000+000+000+000+000	Equivalent stress contours	PEEO (A03775%) 1 0539-030 1 0539-030 1 0539-030 1 0539-030 1 0539-030		structure all abrasives ~ erosion. ity 15 m/s, angle 50°
S. Max In Pane Principal (Atg: 75%) - 2.000e-02 - 1.000e-02 - 1.000e-02 - 1.000e-02 - 1.000e-02 - 3.058e-00 - 3.058e-01 - 3.05				
- 9398-02 - 9398-02 - 9398-02			1 st principal stress contours	Equivalent plastic strain contours

Modeling abrasive wear loading in 2- and 3-body contactsModeling abrasive wear loading arising from

Wear resistance and the "collapse" of a rock column and a velocity of approx. 50 m/s at a nominal angle of 50 degrees.

Modeling abrasive wear loading in 2- and 3body contacts

Modeling abrasive wear loading arising from 2- and 3-body abrasion.

Wear resistant plate moving laterally with a velocity of 10 m/s.

Summary: Comparison of impact resistance of two different microstructures

OUTCOME: Impact resistance retained, resistance to abrasion (G65) improved by 40%.

References

