The fundamental role of the nanoscale materials characterization in the automotive industry

CRF- Group Materials Labs

Nello Li Pira,
Physical Analysis Department Manager, Material Manager
+39 366 7830 932, nello.lipira@crf.it
I. Main drivers and targets for novel components

II. Where and Why materials integration: need a new approach in characterization

III. Three main examples of characterization improvements:
 I. Optical finishing
 II. Embedded electronics
 III. Multi-materials and miniaturization

IV. Conclusions
Mission

To develop and transfer innovative powertrains, vehicle systems & features, materials, processes and methodologies together with innovation expertise in order to improve the competitiveness of FCA products.

To represent FCA in European and National collaborative research programs, joining pre-competitive projects and promoting networking actions.

To support FCA in the protection and enhancement of intellectual property.
Group Materials Labs: worldwide operations

- 900+ Material Analysis Equipments
- 350 Qualified Resources as Engineers, Chemists, Physicist and Mathematicians
- 65 Research Projects
- 50 Years Experience
- 28 Subject Areas
- 16 Research Laboratories all over the world
- 5 Technical Departments
- 27 Competence Centers

Started on May 1st 2010

Headcount: EU 193 | WW 350
Locations: EU 9 | WW 16

Assure up-to dated competences
Share best practices
Assure equipment sharing and saturation
Efficient labs activities
Needs, Targets, Priorities & Challenges

DECOUPLED
Innovative Actions

- Research
- Innovation
- Methodologies
- Materials application feasibility
- Materials characterization
- Materials environmental issues

COUPLED
Activities on Products

Product Development:
- Materials engineering
- Materials Testing on components/vehicle
- Failure analysis

Product in production:
- Failure analysis
- Product materials compliance

Automotive Brands
DECOUPLED: National and International Collaborative Research projects examples

- H2020
- M-Eranet
- KIC RawMaterials

Hub of Application Laboratories for Equipment Assessment in Laser Based Manufacturing

smartonics

CORNET

TERASEL

PULSE

Multiscale modelling and characterization to optimize the manufacturing processes of Organic Electronics materials and devices

Thermo-plastically deformable circuits for embedded randomly shaped electronics

Development of smart machines, tools and processes for the precision synthesis of nanomaterials with tailored properties for Organic Electronic

Micro QD-LED/OLED Direct micro patterning

Smart in-line metrology and control for boosting the yield and quality of high-volume manufacturing of Organic Electronics

High-Power Ultrafast Lasers using Tapered Double-Clad Fibre
COUPLED: Brand Product Development

New materials scouting
Assess application of new materials on PSP
Standards and specifications update taking also “lesson learned”.

Chemical and Physical analysis on materials
Metals & Polymers Testing
Tribology, Fatigue, Aging (Thermal & environmental), Surface

Metrology
• Components measurements;
• Instruments calibration
Validation and qualification
Assess feasibility on Style proposals

Anti-Corrosion
Environment
Paints aesthetical performance
Components assessment
Methodology survey and update
Failure analysis
I. Main drivers and targets for novel components

II. Where and Why materials integration: need a new approach in characterization

III. Three main examples of characterization improvements:
 I. Optical finishing
 II. Embedded electronics
 III. Multi-materials and miniaturization

IV. Conclusions
Every day our cars are being coming more like …

Movable living rooms:
- Entertainment
- Relaxing
- Autonomous Driving
- …

Movable batteries:
- Battery Electric Vehicle
- Tesla model S: 100kWh
- Nissan Leaf to Home
- …

Movable Computers:
- Autonomous driving
- ADAS
- Cameras
- RADAR
- LIDAR
- …

Movable smatphone:
- IoT
- Large area infotainment
- Entertainment devices
- Connectivity
- Touch
- …
Needs, Targets, Priorities & Challenges

Interior & HMI

Chrysler Portal, EV of FCA @ CES 2018 Las Vegas

Mitsubishi concept 2017
Needs, Targets, Priorities & Challenges

EV/HEV

1. Battery
2. Inverter / Converters / Chargers
3.
Needs, Targets, Priorities & Challenges

Materials:
• Bulk structural materials
• Coatings
• Resins

Functions (as electronics):
• Cabling
• Displaying
• Connectivity

Functional Active Materials:
• Embedded Organic Electronics
• Adaptive sensoring
• Data communication controls
“The key challenge is non-technical. OEMs will need an overall culture shift.”
Needs, Targets, Priorities & Challenges

New paradigm in **characterization** is needed (the case of Optical materials)

- **L*, a*, b***: CIELAB chromatic coordinates
- **Ra**: Surface Roughness
- **GU**: Gloss
- **%Rtot**: Total reflectance
- **%Rdiff**: Diffuse reflectance
- **%Rspec**: Specular reflectance
- **DOI**: Distinctness of image
- **DAF**: Distribution of amplitude in profile
- **ξ**: Horizontal Correlation Length
- **Haze**: Turbidity or cloudiness
- **Clarity**: Clearness as to perception
- **BRDF**: Bidirectional Reflectance Distribution Function
- **λRF**: Birefringence
- **MTF**: Modulation Transfer Function
- **n**: refractive index
I. Main drivers and targets for novel components

II. Where and Why materials integration: need a new approach in characterization

III. Three main examples of characterization improvements:
 I. Optical finishing
 II. Embedded electronics
 III. Multi-materials and miniaturization

IV. Conclusions
Needs, Targets, Priorities & Challenges

Where?

- Roof
- Rear window
- Tail light
- Seats
- Door panel
- Roof Panel
- Infotainment & entertainment
- Rear mirror
- Door panel
- Windshield
- Headlamp
- PWT
- Transmission
- Bumper
- On-board communication
- Dashboard
- Lighting
- Tyres
- PWT
Optical finishing

Description

- Displays exposed to sunlight are hard to read due to glare.
- Antennas and embedded communication
- Transparent materials for EM transmission
- Reflection issues to be managed on glass/plastic surface
- Fingerprinting issues

Effect

- Read-ability
- Clarity of the projected images
- Read-ability, visibility, blur, sparkling
- Mura effect

Development needs

New coatings development
- AntiGlare AG
- AntiReflective AR
- Antifingerprint AF

Conductive coating and plating
Definition of standard with EE Ergonomy
Materials: optical finishing
Optical finishing: AntiGlare and Clarity (Haze)

Where:
Bidirectional reflectance distribution function
Bidirectional Transmittance distribution function
R_t is total reflection, R_s Specular Reflection, R_d Diffuse reflection
T_t Total Transmittance, H Haze and C Clarity

Haze and Clarity

- Haze: $T_{d,2.5^\circ}^{90^\circ} = \frac{I_{d,2.5^\circ}^{90^\circ}}{I_i} \Rightarrow H = \frac{T_{d,2.5^\circ}^{90^\circ}}{T_t}$

- Clarity: $T_{d,0^\circ}^{0.1^\circ} = \frac{I_{d,0^\circ}^{0.1^\circ}}{I_i} \Rightarrow C = \frac{T_{d,0^\circ}^{0.1^\circ}}{T_t}$
• **Same Ra** (Arithmetic mean of the absolute ordinate values Z(x) within a sampling length) for surfaces of widely different profiles

• **Horizontal Correlation Length (ξ) and Amplitude Density Function (ADF)** give information about the material and void volumes characterizing the surface topography

Optical finishing: sparkling

Average Roughness:

\[R_a = \frac{1}{l} \int_0^l |z(x)|dx \]

BRC(c):

\[BRC(c) = \int_c^0 ADF(z)dz \]

Sampling length and Evaluation length

- Sampling length \(r = \text{Cut-off } \lambda_c \)
- Evaluation length \(n = n \lambda r \)
- Probability density
- Amplitude distribution
Embedded electronics

Description

- Transparent conductive layer
- Organic and flexible electronics
- Multi-layered structures
- Joining and bonding materials
- Plating (selective)

Effect

- EM noises
- Failure anticipation
- Feedback sensitivity
- Miniaturization
- Sintering and processing

Development Steps

- Procedure to measure thickness
- Interlayers
- Processes and low T sintering
- 3D joining
- Definition of new EE standards

Multimetal plating on connectors

Proven integration in electronics manufacturing
Advanced electronic testing \rightarrow cross section analysis

Supporting for product development of advance cross section analysis
- Section by Focused Ion Beam Microscopy FIB

Soldering \rightarrow Cu thermal dissipater on substrate Sn/Sb \rightarrow Tin/Antimony

- Intermetallic migration within substrate structure
Multi-materials/miniaturized components

Description
- Miniaturized connections
- Miniaturized sensors
- Multi-layered multi-materials
- Additive manufacturing powders
- Electrodes and electrolytes for batteries

Effect
- Failures anticipation
- Custom components manufacturing
- Miniaturization

Development Steps
- Non-destructive testing
- Geometrical and metrological reconstructions
- Definition of new standards
Nell’Additive Manufacturing è fondamentale la qualità delle polveri
Esempio: analisi tomografica di un set di polveri con una risoluzione a 10 µm

Nell’esempio sono evidenziati in rosso granelli con porosità interne

Controllo Preventivo Polveri
Per gentile concessione del Sig. Leone Politecnico di Torino
Servizi di scansione con Tomografia Assiale Computerizzata (TAC)
I. Main drivers and targets for novel components

II. Where and Why materials integration: need a new approach in characterization

III. Three main examples of characterization improvements:
 I. Optical finishing
 II. Embedded electronics
 III. Multi-materials and miniaturization

IV. Conclusions
Conclusions & wrap-up

Integration is possible by trade-off and collaborations among technical competences

- OEMs have to and need to drive the suppliers
- Finalization of product/technology/materials to expected targets

Continuous update of the materials’ skill in testing

- Integration
- Finalization
- OEMs have to and need to drive the suppliers
- Conclusions

INTEGRATION

- Aesthetics & Function
- Design & Style
- Lightweight & safety
- Testing & Characterization
- Electrical & Electronics
- Materials
- Quality & Process
- Sustainability & Recycling
New paradigm in **characterization** is needed

Two steps of characterization:

Characterization clusters
1. Materials Analysis
2. Components Analysis

Characterization methodologies:
1. Chemical
2. Mechanical
3. Photo-electro physical
4. Interface and superficial
5. Environmental and aging
Wrap-up

MC: Major Challenges in methodologies

Main characterization analysis

Materials
- XRD
- EDS
- Raman
- ICP-MS
- TERS

Components
- EDG
- FTIR
- ICP-OES
- UV-Vis
- VP-OICP-MS-Titration
- SIMS
- Raman
- XRF

Chemicals & Elements
- Corrosion
- Humidity
- Temperature

Mechanical
- Tensile stress
- Traction
- Ball test

Photo-Electro Physical
- Ultrasonics
- IR
- Penetrating liquid
- Endoscopic
- Radiography
- CTS
- IR emissivity
- Neutron
- Electrical Failure Analysis
- Dark current

Technologies
- IR emissivity
- XRD
- SRP
- Mercury probe
- Parametric Analyzer
- DLTS

Physics & Superficial
- Tensile stress
- Ultrasound
- IR
- Endoscopic
- Eddy current

Environment & Aging
- Wear
- Abrasion
- UV exposure
- Humidity
- Temperature
- Operative endurance
Thank you
nello.lipira@crf.it, Mob. +39 366 78 30932