Intelligent Open Test Bed for Materials Tribological Characterisation Services

Dr. Amaya Igartua, TEKNIKER (amaya.igartua@tekniker.es)

i-tribomat@ac2t.at; www.i-tribomat.eu

DT-NMBP07-2018, Open Innovation Test Beds for Characterisation

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (innovation action) under grant agreement No. 814494 (Call: H2020-NMBP-TO-IND-2018)
Motivation

Industrial Motivation → Materials up-scaling
Reduction of time to market & reduction of costs
Overall Approach
Main Concept - Implementation

• 4 Interacting Units
 • Shared infrastructure
 • Enabling standardised tribological materials characterisation services

• IT-platform
 • Data driven services

• Collaboration interface
 • Virtual work rooms and lab-to-field upscaling tools

• Single-Entry Point
 • Service Provider
i-TRIBOMAT workflow & services

industrial users & customers

new materials & product design
- operational conditions: load, speed, temperature...
- tribological system & tribological mechanisms

down-scaling
- transferring operational conditions via modelling & simulation to laboratory for realistic tribo(logical)-testing
- selecting tribometers from the shared infrastructure
 - pin-on-disc, ball-on-disc, cylinder-on-roller, rubber wheel, thrust washer, ball-on-rod, block-on-ring, FZG-test, drag friction test, journal bearing test, sealing test stand, vacuum tests...
- designing experiments (DoE)
 - cost- and time-efficient testing matrix

i-TRIBOMAT SEP

services
- material characterisation
 - tribo-testing and triboanalytics
 - data-driven knowledge
 - data storage, sharing, analytics, artificial intelligence methods, ...

up-scaling
- transferring laboratory results to field application (lab-2-field)
- collaboration interface
 - virtual work rooms
 - numerical simulation
 - surrogate models, ...

TRL 4 & 5

TRL 5 → 6
As described above the overall workflow of i-TRIBOMAT goes through a modular system. The identified parts and their specific loading conditions are the input subsystems for the contact mechanics modelling and simulation. The system is divided into two main stages: MODA: DOWN-SCALING and MODA: UP-SCALING. These stages are connected to LABORATORY characterisation services, which include material characterisation, tribo-testing, and triboanalytics.

SYSTEM/COMPONENT
- new material and/or product design
- operational conditions load, speed, temperature...
- tribological system & tribological mechanisms

LABORATORY
- characterisation services
- material characterisation
- tribo-testing and triboanalytics

Figure 2: MODA linked to the workflow of i-TRIBOMAT
Idea- Combined Ontologies

i-Tribomat: represent the material not only as itself but as the evolution of it (properties, etc.) after a process.

VARM is an ontology from the manufacturing domain. **EMMO** is an ontology from the materials domain.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Data properties</th>
</tr>
</thead>
</table>
| MaterialClass | Represents a grouping of material definitions with similar characteristics. | • materialClassID [max-1]
 | | • description
 | | • model |
| MaterialDefinition | Represents a material. | • materialID [max-1]
 | | • description
 | | • model
 | | • maker |
| MaterialSegmentSpec | Represents the material resources required for a process segment. | • description
 | | • quantityString|
 | | • dataType |
Idea: Guided data uploading methodology

Experimental data in testbed projects will be **uploaded in a similar manner**: Users will combine data generated from commercial or custom software **from different sources with manual annotations**.

How: Data from the raw files will be extracted to pre-defined data model entities and complemented with the manual inputs

Manual data inputs:
- **Graphical user interfaces:** Ease the data uploading with simple and clear interfaces. Checks to ensure all inputs are filled correctly.

Automatic data processing:
- **Data verification:** Check that provided data is well formatted
- **Data validation:** Check that the provided data is good in context
- **Data extraction:** Parse and transform the data to own model entities.
Project contribution to CHADA template

<table>
<thead>
<tr>
<th>i-TRIBOMAT</th>
<th>DT-NMBP07-2018</th>
<th>www.i-tribomat.eu</th>
<th>i-tribomat@ac2t.at</th>
</tr>
</thead>
</table>

List of main characterisation methods used in the project

<table>
<thead>
<tr>
<th>Method</th>
<th>Level of use in the project</th>
<th>Main reference in the project</th>
<th>Contact email(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin on Disc (basic tribological test)</td>
<td>Advanced user</td>
<td>AC2T LTU VTT BAM TEKNIKER</td>
<td>ivana.toth@ac2t.at ichiro.minami@ltu.se Helena.Ronkainen@vtt.fi dirk.spaltmann@bam.de Alberto.alberdi@tekniker.es</td>
</tr>
<tr>
<td>Twin disc (rolling/sliding tribological test)</td>
<td>Method developer</td>
<td>TEKNIKER</td>
<td>Alberto.alberdi@tekniker.es</td>
</tr>
<tr>
<td>FZG (gear tribological test)</td>
<td>Advanced user</td>
<td>TEKNIKER</td>
<td>Alberto.alberdi@tekniker.es</td>
</tr>
<tr>
<td>TESSA (seals tribological test)</td>
<td>Instrument developer</td>
<td>TEKNIKER</td>
<td>Alberto.alberdi@tekniker.es</td>
</tr>
</tbody>
</table>
All information in this publication and all further technical advice is based on our present knowledge. However, they imply no liability or other legal responsibility on our part, including with regard to existing third party intellectual property rights, especially patent rights including copyrights, trademarks and designs. In particular, we cannot give any warranty, whether express or implied, or guarantee product properties in the legal sense. We reserve the right to make any changes according to technological progress or further developments. The performance of products described herein should be verified by each user with experiments (designed for the respective application) which are to be carried out by qualified experts. Suggestions for uses or applications are only opinions. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products cannot be used.

Coordinator:
AC2T research GmbH
Viktor-Kaplan-Straße 2/C
2700 Wiener Neustadt
+43 (0) 2622 81600
i-tribomat@ac2t.at
www.i-tribomat.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (innovation action) under grant agreement No. 814494 (Call: H2020-NMBP-TO-IND-2018)