

Solar Energy for a Circular Economy

Joanna Kargul

Centre of New technologies, University of Warsaw, Poland

EuroNanoForum, Bucharest

12 – 14 June 2019

www.sunriseaction.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 816336

Coordination and Support Action - Objectives

Collective Human Catalysis to prepare a European large-scale research initiative

- Develop the Science & Technology roadmap of the largescale project aimed at solar-to-chemical conversion
- ❖ Build the community: scientific, industrial, general public
- Structure an effective governance scheme

Vision and Goals

SUNRISE targets the ultimate alternative to the fossil-based, energy-intensive production of fuels and base chemicals. The energy will be provided by sunlight. The raw materials will be molecules abundantly available such as water, carbon dioxide, oxygen and nitrogen.

Vision and Goals

THE THREE GOALS OF SUNRISE

Goal 1 – SOLAR FUELS (e.g., hydrogen, ethanol)

Goal 2 – SOLAR CHEMICALS (e.g., N-fertilizers)

Goal 3 – Removing and recycling **CO**₂ **FROM THE ATMOSPHERE**(long term, 2050)

SUNRISE IS INSTRUMENTAL
TO IMPLEMENT
A CIRCULAR ECONOMY

Vision and Goals

Technical Approaches

SUNRISE: APPROACH 1

1- Electrocatalytic conversion with renewable power

6 planes

2,000 trucks

50,000 cars

DEMONSTRATOR PLANT IN GERMANY

560 GWh_{el}

280 GWh fuels

SUNRISE: APPROACH 2 and 3

2- Direct conversion *via* integrated artificial and semi-artificial photosynthetic systems

3- Direct conversion *via* biological and biohybrid systems

SUNRISE: State of the art

STATE OF THE ART: PEC tandem heterojunction device with 19% STH efficiency, ACS Energy Lett. 2018, 3, 1795-1800

Targets, Challenges

TARGETS AND PHYSICAL CONSTRAINTS: CHEMICAL REACTIONS AND SITE-SPECIFIC IRRADIATION

From lab devices to hectare scale pilot plants linked to targets (fuel, chemicals and CO₂ removal)

- Ethanol (ton/ha.yr)
- Ammonia (ton/ha.yr)
- CO₂ (ton/ha.yr)

(SOME) CHALLENGES

Highly efficient harvesting of solar photons (90%)

Robust materials under different irradiation conditions

Catalysts based on **earth abundant** elements

Advanced modelling and HPC for materials design

Scaling up at the industrial level on a large scale

Efficient use of the **Earth's surface** and urban space

High Energy Return of Energy Invested (EROI)

Consolidation of social acceptance

AN INTERDISCIPLINARY ENDEAVOR

Partnership

SUNRISE: 20 PARTNERS

1 – Leiden University (NL)	11 – SIEMENS AKTIENGESELLSCHAFT (DE)	
2 – CEA (FR)	12 – UNIVERSITY OF TURKU (FI)	
3 – CNR (IT)	13 – UNIVERSITY OF WARSAW (PL)	
4 – EMPA (CH)	14 – CZECH ACADEMY OF SCIENCES (CZ)	
5 – University of Uppsala (SE)	15 – JOHNSON MATTHEY PLC (UK)	
6-IMDEA (ES)	16-ICIQ (ES)	
7 – Fraunhofer Gesellschaft (DE)	17 – EERA	
8 – Forschungszentrum Jülich (DE)	18 – Norwegian Univ. of S&T (NO)	
9 – Imperial College (UK)	19 – Univ. Catholique de Louvain (BE)	
10 – EMIRI (BE)	20 – ENGIE	

- Some of the largest EU public R&T org. (CEA, CNR, Fraunhofer, Helmholtz)
- 3 big companies (Siemens, Johnson Matthey, ENGIE)
- An industry-led initiative (EMIRI)
- The EU Energy Research Alliance (EERA)
- 11 Universities and Res. Centers

Community

CSA: Supporters, a growing community

24 Companies Energy and Oil&Gas sectors

4 Non-governmental organisations (NGO)

56 Universities

13 Companies Chemical and Material sectors

20 European and National Associations& Networks

9 Funding &Governancebodies

31 Research & Technological Centres

4 Companies Project

Management, Innovation and

<u>Dissemination</u>

SUNRISE HAS OVER 200 SUPPORTERS WORLDWIDE

IVERSITÉ

DE PAU ET DES

UNIVERSITÀ DEGLI STUDI FIRENZE

MUEGGE

SCHAEFFLER

PARIS-SACLAY

Roadmap and blueprint

Roadmap 2020-2030

Defining objectives (and bottlenecks) in 1, 2, 5, 10 years

M2: Initial working document

M6: Advanced draft, to be shaped also through a dedicated workshop

M12: Final shared document, validated by the Strategic Advisory Board

Aspects to be considered: science breakthroughs, prototypes, large-scale demonstrators, EROI, LCAs, generation of revenues, educational progress, society involvement, criteria for continuous update

CSA: Building the Roadmap - PRDs

SUNRISE APPROACH 1:

SUNRISE APPROACH 2:

SUNRISE APPROACH 3:

KEY ENABLERS:

Hydrogen
CO₂-to-chemicals
Ammonia
Jet Fuel

Molecular
Systems;
Photon
Management

Biocatalysts
Biohybrid Tech
Synthetic Biology

Modelling; Qualitative System Analysis

Blueprint

Goal: SUNRISE map, a public document identifying the necessary resources to accomplish our goals:

- **Human capital** (S&T competences)
- EU facilities and infrastructures (public and private)
- Big companies and SMEs that can offer and/or develop products
- **Financial resources** already invested and to be further mobilized (public & private)
- Criteria to make SUNRISE an open and inclusive initiative

