putting quantum into nanotechnology

what will be the driving technology

in the 21st century?

revolutions: a historical perspective

1780

 $dS \geqslant \frac{\delta Q}{T}$

1865

 $i\hbarrac{\partial|\psi
angle}{\partial t}=\mathcal{H}\left|\psi
ight
angle$

1925

industrial

quantum

two lessons

lesson #1: science drives technology

new science \Rightarrow *new technologies*

lesson #2: it's all about resources

harnessing resources is key

generate, transport, control, transform, use

vision

quantum nanotech

driving technology in 21st century

quantum technologies

the art of manipulating & controlling

individual quantum systems

to perform useful tasks

superposition, entanglement, nonlocality, duality

quantum features:

- 1. cannot be explained classically
- 2. essential for quantum technologies

quantum technologies: disruptive

Quantum communication

the future **quantum internet** will use quantum superposition and entanglement to achieve **super**secure communication

Quantum sensing/imaging

novel quantum devices – quantum microscope, quantum radar, quantum telescope – will revolutionise sensing and imaging

Quantum simulation

efficient simulation of designer molecules will lead to **advanced materials, new drugs, higlyefficient batteries**

Quantum computation

quantum computers will solve important problems (optimization, code breaking) exponentially faster than classical computers

quantum flagship

Sensing/metrology Engineering/control Communication Computation Simulation Software/theory Education/training Basic science

- launched May 2017
- € 1 Billion
- www.qt.eu

EU + ESA

European Quantum Communication Infrastructure (QCI)

SAGA (Security And cryptoGrAphic mission)

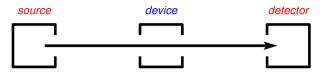
QCI

- 1. ground segment: fiber
 - trusted nodes
 - quantum repeaters
- 2. space segment: free space

QCI will use both

 λ = 1550nm (fiber) and λ = 810nm (free space)

quantum + nanotech


nanotech

- technology platform for the 2nd q.revolution
- tools for building mobile quantum devices small, integrated, room-T
- Moore's law for quantum

quantum

- q.simulation: methods for designing new materials
- q.imaging: revolutionary ways for nanotech imaging

nanotech for quantum

sources

single-photon

entangled photons

high purity

deterministic/on-demand

devices beam-splitters

phase shifters

PBS

quantum memories

detectors

single-photon

photon-# discriminating

high efficiency

low dark-count rates

chip integrated, ambient (T, p)

quantum @RO

Romanian Quantum Network www.roqnet.ro

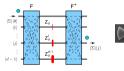
Vision

quantum: the driving technology in 21st century

Mission

develop quantum technologies in Romania

Strategic objectives


- 1. research
- 2. education
- 3. dissemination

QUTECH-RO

- ◆ €1.14 Mil
- 5 partners, 5 projects

• grant: UEFISCDI

P1: Q-INFO	P2: Q-CHIP	P3: Q-VORTEX
IFIN-HH		
quantum information quantum simulation quantum protocols	integrated quantum photonics 3D laser <i>fabrication</i>	optical vortices lithography

 P4: Q-LAB
 P5: Q-FERMI

 UPB
 ITIM-Cluj

 Applied quantum optics Lab
 quantum computation with Majorana

 IBM-Q Lab
 Fermions

 quantum source
 Fermions

research areas

- quantum information: theory, protocols, imaging
- integrated quantum photonics
- optical vortices: q.communication & imaging
- q.memories, Majorana fermions

full process chain

THEORY

gates, algorithms, protocols

↓

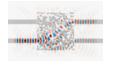
DESIGN & SIMULATION

inverse design, DBS, OptiFTD, MEEP

↓

FABRICATION

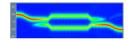
3D printing, lithography

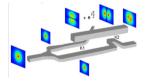

↓

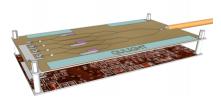
TESTING

tomography, state estimation, certification

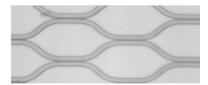
design & simulation

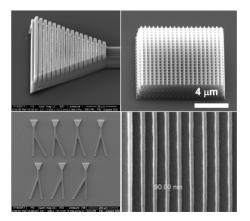

quantum gates:



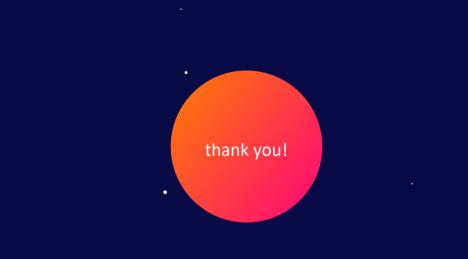


devices:


full integration:



3D laser writing + lithography



- quantum + nanotech: driving tech in 21st century
- synergies: beneficial for both
- q.communication, q.imaging, q.sensing: paradigm changing
- q-Moore's law: smaller, cheaper, faster q.devices

team: IFIN-HH, INFLPR, IMT, UPB, ITIM-Cluj (~ 50 people)

grant: UEFISCDI, 79PCCDI/2018

Ø,

•