

Up-scaling green synthesis and processing of advanced materials: opportunities for knowledge transfer toward innovative SMEs

RADU ROBERT PITICESCU

National R&D Institute for Nonferrous and Rare Metals-IMNR, 102 Biruintei Blvd, Pantelimon, Ilfov, Romania

Corresponding author: rpiticescu@imnr.ro, telephone +40213522048

PRESENTATION CONTENT

- 1. General presentation of IMNR
- 2. Research directions and approach
- 3.Green chemistry synthesis: hydrothermal/solvothermal chemistry
- 4. EB-PVD coating technology
- 5. Additive Manufacturing & regenerative medicine

1. General presentation of IMNR

NATIONAL RESEARCH AND DEVELOPMENT INSTITUTE FOR NON-FERROUS AND RARE METALS – IMNR

102 Biruintei Bvd., Pantelimon, Ilfov County, Romania (T) +4021.352.20.46; (F) +4021.352 20 49 imnr@imnr.ro; www.imnr.ro

01 July 1966 RESEARCH GENERAL ACTIVITY (1966-2004) BACKGROUN **IMNR** is established from: technologies for obtaining metals from ICEM research team Romanian primary resources: ICECHIM research team IPRAN design team Cu, Zn-Pb, Al, TR, Mg, Li • technologies for secondary resources reuse: In, Bi, Cd, Au, Ag, Sb, Se, Mo, W Actually: emerging technologies for new 1990-2004 materials in: aeronautics, chemistry, IMNR S.A. is a state-owned company medicine, energy and machine building 24 December 2004 **IMNR** becomes National R&D Institute DESIGN technological recovery of: Cd, Se, In, Au, Ag, Sb application of licenses: Outokumpu (Cu), ISP (Zn-Pb), Pechiney (Al), Kowa Seiko (pyrite ashes) **ZIROM Giurgiu Factory SMALL** MANUFACTURE non-ferrous alloys

WHO WE ARE

custom made products: EB-PVD coatings .

Euronanoforum 14 June 2019

installations

SCALE

for

the

41 R&D PROJECTS 2013-2017

2 NATIONAL CLUSTERS

- <u>ROHEALTH</u> Medicine
- <u>MHTC Magurele</u> Physics & Engineering

3 EU NETWORKS (COST) 2016-2020

- <u>HERALD</u>: Hooking together European Research in Atomic Layer Deposition (MP14102)
- <u>CRM EXTREME</u>: Replacement of Critical Raw Materials for Extreme Environmental Conditions (CA15012)
- BIONECA: Biomaterials and Advanced Physical Techniques for Regenerative Cardiology and Neurology (CA16122)

4 EU PLATFORMS

- ETP Raw Materials
- EIP Raw Nanovalue
- ETP Nanomedicine
- JTI Nanofutures

Euronanoforum 14 June 2019

Zortrax M-200

2. Research directions and approach

Recycling &Valorization Hydro-chemical Microwave smelting

Chemical and structural characterization RENAR certified methods Materials synthesis: - Metals Ceramics Composites -hybrids

Processing:

-green chemistry -coatings Additive manufacturing

3. Green chemistry: hydrothermal/solvothermal chemistry

Laboratory & Pilot scale autoclaves From 200 mL to 20 L From 200 to 4000 MPa: From RT to 250 deg. C

Main advantages: ✓ Closed systems, reduced environmental impact ✓ Nano-crystalline powders, no thermal treatment needed ✓ Homgeneous distribution of dopants ✓ Pressure control to low temperatures: hybrid organicinorganic biomaterials

9

3. Green chemistry: hydrothermal/solvothermal chemistry

Application domains-Synthesis of nanocrystalline powders:

- YTZP, YSZ, doped ZrO2 for coatings and sintered products
- doped TiO2 for photocatalytic films
- Ag-ZnO antiseptic/antifungical
- doped ZnO/TiO2 for superhydrophobic coatings
- Transition metal doped ZnO & TiO2
- Doped-BST: gas sensors
- **Doped PZT: piezoelectric materials**
- Core-shell composite powders
- Hybrid materials for biomedical applications: HAP polymer for regenerative medicine – special formulated for A.M.
- Other nanopowders on demand

Euronanoforum 14 June 2019

10

3. Green chemistry: hydrothermal/solvothermal chemistry

Up-scaling of green chemistry processes for nanopowders synthesis

Synthesis route	Solid state	Co- precipitation	Hydrothermal	Sol-gel	Spray pyrolysis
Composition control	Poor	Good	Excellent	Medium	Excellent
Morphology control	Poor	Medium	Good	Medium	Good
Particle size (nm)	> 1000	> 100	10-100	>10	>10
Hard agglomerates	Medium	High	Low	Medium	Low
Impurities (%)	0.5-1	Max. 0.5	Max. 0.5	0.1-0.5	0.1-0.5
Additional steps	Calcinatio ns, Milling	Calcinations, Milling	No	Calcinations , Milling	Νο
Scalability	Industrial	Industrial	Demonstration	Demonstrati on	R&D
Environmental impact	High	Moderate	Low	High	Moderate

Euronanoforum 14 June 2019

11

Materials in service under extreme environments:

a) metallic: refractory metals, stainless steels, high-temperature alloys

+		
- well studied	- corrosion problems	
- commercially available	- critical materials	

b) ceramic: UHTC (ultra high temperature ceramics), oxide materials, composites.

a server + a server		
- less corrosion	- less studied	
- low heat transfer	- structure integrity	
- replace critical materials		

Oxide coatings for extreme environments

(advantages and disadvantages of these materials compared with YSZ)

Materials	Advantages	Disadvantages
Alumina	High corrosion-resistance	Phase transformation (1273 K)
	High hardness	High thermal conductivity
and the second	Not oxigen-transparent	Very low thermal expansion coefficient
7-8 YSZ	High thermal expansion coefficient	Sintering aboce 1473 K
	Low thermal conductivity	Phase transformation (1443 K)
	High thermal shock resistance	Corrosion
		Oxygen-transparent
YSZ + CeO2	High thermal expansion coefficient	Increased sintering rate
* *	Low thermal conductivity	CeO ₂ precipitation (> 1373 K)
	High thermal shock resistance	CeO ₂ -loss during spraying
	High corrosion-resistance	
	Less phase transformation between m and t	
	than YSZ	

Oxide coatings for extreme environments

(advantages and disadvantages of these materials compared with YSZ)

Materials	Advantages	Disadvantages
La2Zr2O7	Very high thermal stability Low thermal conductivity Low sintering Not oxigen-transparent	Relatively low thermal expansion coefficient
Mullite	High corrosion-resistance Low thermal conductivity Good thermal-shock resistance below 1273 K Not oxygen-transparent	Crystallization (1023-1273 K) Very low thermal expansion coefficient
Silicates	Cheap, readily available High corrosion-resistance	Decomposition into ZrO2 and SiO2 during thermal spraying Very low thermal expansion coefficient

Test the limits of your mind

Today's imagination is tomorrow's innovation

Test the limits of your mind

Today's imagination is tomorrow's innovation

17

Designed coatings arhitectures:

-Multylayer arhitectures -Different materials -Up to16 different materials may be deposited -In situ controled thickness

NiCrYAl/Al2O3/REOs-doped ZrO2/La2Zr2O7 coatings on NIMONIC 80

5. Additive manufacturing & regenerative medicine

5. Additive manufacturing & regenerative medicine

SEM pictures of a 3D sample based on Hap and commercial PU

5. Additive manufacturing & regenerative medicine

- Multifunctional surface
- Nano-scale architecture
- Narrow polydispersity
- The terminal groups may be functionalized with chemical or biological fragments.

HYBRID MATERIALS NANOSTRUCTU RED

MARKET

- Types of material: polymers; metal; ceramics; natural (each of these presents a series of limitations)
- Medical applications requiring new materials: Cardiovascular; Dentistry; tissue engineering; Ophthalmology; Neurology; Gastroenterology; Plastic surgery; Orthopedics; Wound healing
- Applications of nanostructured hybrid materials: controlled release of drugs, contrast agents in MRI, implants, biosensors

- The possibility of customized applications
- Selection of organic functions depending on the application domain
- Technology at TRL level 4
- Validated results in national and European projects

Acknowledgements:

STRUCTURAL FUNDS Infrastructure Project "High PTMET Research Centre"

H2020 Grant 692216 Virtual Centre for Synthesis and Processing of Advvnaced Materials under Extreme Conditions-SUPERMAT

ERAMIN II-COFUND -Grant ID 87 ctr. 50/2018 MONAMIX financed by UEFISCDI

EURONANOMED - Grant 1/2017 NANOVIBER financed by UEFISCDI

Program Nucleu PN 19 19 04 01 financed by Romanian Ministry for Scientific Research and Innovation.

RDI Programe for Space Technology and Avanced Research - STAR, project number 528 – Acronym Androtech

THANK YOU FOR YOUR ATTENTION