

New Energy Materials

An Interdisciplinary Challenge for Research & Innovation

Franz Stelzer

TU Graz - Institute for Chemistry & Technology of Materials (ICTM) Bucharest 14.6.2019

OUTLINE

- Intro General Situation
- Sustainable Energy Systems
 - (short survey on advantages & needs)
 - Wind-, Solar-, Geothermic-, Hydro-Power
 - Storage systems
- Materials/Methods/Innovations needed
- Possible Contributions of TU Graz / eseia
 - Some Selected Examples
- Conclusion & Discussion

General Situation

some statements

- Reduction of use of fossil ressources & nuclear energy is an absolute demand !
- Move to renewable ressources → implantable technologies (biomass direct incineration, BtL, BtG, etc.)
- Natural energy ressources wind & sun not deliverable "on demand" → Storage necessary
- Different needs for transportation/heating/climatization/industry with respect to
 - Capacity,
 - charging speed & infrastructure,
 - Output power

Sustainable Systems

some special demands, selected examples

- General: restrictions with respect to protection of nature, deep(er) understanding of physics&chemistry, technologies, ... in addition:
 - Wind: availability of / access to mineral ressources (rare earths !!), noise, ice prevention / de-icing
 - Solar: large areas, new materials and systems(textile architecture, low light intensity (dawn), thin film technology, organic materials,

• Storage / Recovery Systems

- Hydropower (protection of nature caves/underground = expensive);
- Hydrogen (electrolysis catalysts/electrodes? fuel cells)
- Accumulators/batteries :
 - Safety, new solid state electrolytes
 - Capacity: new electrode materials, alternative renewable ressources (e.g. lignin),
 - Charging technology (fast!! ?) or exchange system (deposite return scheme)

Over All: Interdisciplinary / Multidisciplinary Development Schemes are necessary Example: organo- electronics, including PV

From History to presence to Future: multidiscipinary approaches:

1980 onwards: Physicists \rightarrow Theories, Chemists – new Materials ("conductive polymers"),

- 1990s: technology developments thin films ("Nano layers"), structuring technologies (photo-litho etc. towards real "Nanotechnology"
- 2000s ongoing: nano structuring, self-assembly, additive manufacturing, "molecular technology"
- Still necessarry (or even more than ever): collaboration/clustering between chemistry/physics/characterization techniques/production technology/technology/

Some selected Contributions and Examples for the postulated Interactions as found at TU Graz

- Examples, series 1, materials for Photovoltaics / Research Group Gregor Trimmel
- Examples, series 2) materials for Energy Storage / Research Group Martin Wilklening

Franz Stelzer 14.06.2019

TU Graz / eseia contribution / selected examples 1: Research Group Gregor Trimmel New Materials for photovoltaics

Focus on:

absorber materials processable from solutions (via spin coating, doctor blading etc.)

new materials and/or new synthetic approaches

Non fullerene acceptor – polymer solar cells

Effect of Polymer Molecular Weight on the Performance of PTB7-Th:O-IDTBR Non-Fullerene Organic Solar Cells

Molecular Weight	<i>V</i> oc (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)	EQE _{max.} (%)
50 kDa	1.01±0.01	13.5±0.3	62.1±0.6	8.44±0.21 (max. 8.84)	62.4
100 kDa	1.00±0.01	14.2±0.5	61.4±1.4	8.68±0.23 (max. 9.08)	64.1
200 kDa	1.00±0.01	15.2±0.5	63.0±1.6	9.57±0.25 (max. 9.94)	74.9
300 kDa	0.99±0.01	15.1±0.5	51.6±1.3	7.73±0.18 (max. 8.09)	74.0

S. F. Höfler, et al. J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA02467G

Franz Stelzer Gregor Trimmel 14.06.2019

New route to metal sulfide/polymer solar cells

T. Rath et al. Adv. Energy Mater. 2011, 1, 1046

Gregor Trimmel 14.5.2018

Solar Cells up to 3% efficiency

Glass/ITO/PEDOT:PSS/PAL/AI or Ag

T. Rath et al. Adv. Energy Mater. 2011, 1, 1046

Franz Stelzer Gregor Trimmel 14.06.2019

NiO,

Lead-based Perovskite Solar Cells

A $CH_3NH_3^+$, $FA^{+,} Cs^+$ B Pb C I⁻, Br⁻

Low temperature processing without TiO₂ which is suitable for preparing flexible solar cells

Substrate/HTLs	V _{oc} (V)	I _{SC} (mA/cm²)	FF (%)	PCE (%)
NiO _x	0.94	21.73	62.8	12.83
PEDOT:PSS	0.85	18.25	53.8	8.37
MoO ₃	0.23	9.84	24.0	0.54
V_2O_5	0.58	3.83	34.3	0.76
no HTL	0.27	15.80	30.8	1.33

S. Weber, et al. J. Mater. Sci. Mater. Electron. 2018, 29, 1847-1855

Gregor Trimmel 14.5.2018

© AIT

Lead-free Perovskite Materials for Solar Cells

Bismuth-Perovskites

film formation

THF drop – modification Standard procedure

scale bar = 30 um magnification: 1000 x

Spin coating of presynthesized

scale bar = 30 µm magnification: 1000 x

0.5

Voltage (V)

0.0

1.0

Gregor Trimmel 14.5.2018

Germanium-Perovskites

I. Kopacic et al. ACS Appl.Energy Mater. 2018, 1, 343–347

Tin perovskite solar cells

Figure 2: (A) Schematic of the solar cell architecture (B) J-V curves of the tin perovskite solar cell measured in forward scan direction 120 h after fabrication, (C) shelf life time and operational lifetime of these solar cells.

J. Handl, S. Weber, B. Friesenbichler, P. Fürk, T. Dimopoulos, B.Kunert, T. Rath, G.Trimmel, J. Mater. Chem. A 2019,7, 9523-9529

Gregor Trimmel 14.5.2018

TU Graz / eseia contribution / 2 : Research Group Martin WILKENING

Energy Storage - From Fundamentals to Applications

workgroup Wilkening@ICTM

focusses on the development of sustainable materials

- active materials (anode side)
- solid electrolytes

for battery applications

<text>

- ageing effects (Tesla's Panasonic cells), ...
- µ-batteries using single crystalline silicon, ...
- all-solid-state lithium batteries, ...

Example 1: nano-titania as anode material

- prepared via hydrothermal techniques in the form of nanotubes
- anodic etching of Ti foil yields amorphous tubes
- useful for both Li and Na batteries.

contact: Dr. Hanzu

Graz

nanotubes of titania filled with Sn (white areas in BSE mode)

electrochemical synthesis of anode materials

Example 2: nano-LiFePO₄

900 nm

DNA-modified

viruses or bacterio-

phages act as

biotemplates

covering of the bacteriophages with LiFePO₄ from aqueous solution

Example 2: nano-LiFePO₄

- DNA-modified viruses or bacteriophages act as **biotemplates**
- covering of the bacteriophages with LiFePO₄ from aqueous solution

Example 2: Si as anode material in µ-batteries

- monocrystalline Si
- collaboration with Infineon Austria
- structured, 3D-patterned via the BOSCH process
- batteries for the internet of things
- batteries for medicine, smart sensors, RFIDs

Graz

Example 2: investigation via SEM and HR-TEM

formation
of amorphous LiSi

 investigation of transport parameters
via lithium NMR at TUG

(USP in Europe)

ra7

Example 3: ceramic electrolytes (ion dynamics)

- micro- and macroscopic Li diffusion parameters
- NMR, broadband impedance spectroscopy

cooperation partners:

QENS, EXAFS, positron annihilation, beta-NMR, neutron diffraction, etc.

LATP: bulk vs. g.b.

Materials: selection

PCCP, J. Mater. Chem.

lithium alumium phosphates Li(7) spin-lock NMR low *T* broadband conductivity spectr.

garnets: LLZO-based

Chem. Mater. Inorg. Chem.

LLZMO, Mo on Zr sites LLZTO, Ta on Zr sites, single crystal Al-/Ga-bearing LLZO

 thiophosphates argyrodites J. Phys. Chem. Lett. ChemPhysChem J. Phys. Chem. C

Li-7-P-11 phase, $Li_7P_3S_{11}$ γ - and β -Li $_3PS_4$

γ- and β-Li₃PS₄

ic™

Example 3: titania as anode in all-solid-state batteries

Example 3: titania as anode in all-solid-state batteries

Take Home Message:

Development of "Energy Materials"

- Has not yet reached its peak
- Only possible by intensive inter-/multi-disciplinary/ multinational collaboration
- Needs
 - sustainable ressources
 - sustainable infrastructure
 - Intensive collaboration between science and application (industry) with strong funding at low TRLs

