

Operational Programme Competitiveness

Extreme Light Infrastructure – Nuclear Physics (ELI-NP) – Phase II Project co-financed by the European Regional Development Fund

New Research Opportunities

AT EXTREME LIGHT INFRASTRUCTURE -NUCLEAR PHYSICS

EuroNanoForum 2019 June 12-14, 2019

CĂLIN A. UR ELI-NP/IFIN-HH

ELI in a Nutshell

Extreme Light Infrastructure Pan–European Research Center

Target: implement the world's largest laser research infrastructure

Infrastructure: distributed over three complementary pillars (CZ, HU, RO) – user facilities

Strategy: first ESFRI project to be fully implemented in newer EU member states

Funding: novel model combining ERDF funds for the implementation and contributions to an ERIC for the operation

ELI–NP, Magurele, RO: Nuclear Physics Facility with ultra–intense laser and brilliant gamma beams

nuclear physics with extreme e.m. fields

ELI–NP – Magurele Physics Platform

<complex-block>

BUCHAREST

rail/road

954 m

NUCLEAR Tandem accelerators Cyclotrons γ – Irradiator Advanced Detectors Biophysics Environmental Phys. Radioisotopes

ELI-NP

nage © 2009 DigitalGlob

9 ORION-MI

ELI-NP

Extreme Light to Study Matter

ELI–NP The Most Powerful Laser in the World

High Power Lasers = 2 x 10 PW

Gerard Mourou 1985: Chirped Pulse Amplification (CPA)

ELI–NP 3D Model Experimental Building

Extreme Light Interaction with Matter

HPLS Focused Intensity ~ 10²³ W/cm²

Extreme Electric Fields ~ 10¹⁵ V/m

New Paradigm in Particle Acceleration

E~ 10¹⁵V/m

CERN - Geneva

Electron and ion beams accelerated at solid state densities of 10²⁴ cm⁻³ (Classical beam densities ~ 10⁸ cm⁻³)

Acceleration on very short distances (µm-mm)

10 PW – Unique Experiments from Day – 1

- Goals of commissioning experiments:
 - physics based validation of laser system performance
 - develop particle beams for nuclear and QED experiments

Medical Applications with High Power Lasers

Patient

Therapy with proton beams

TRADITIONAL X-RAY THERAPY

Smaller doses of radiation are used to reduce damage to healthy tissue due to the inability to restrict radiation pattern to cancerous tissue

PW lasers can provide proton accelerators of compact sizes for hospitals

~5m

LASER

system

Control system

10 PW Laser Beam Transport System

2x10 PW beams + 1 PW auxiliary beam to any of 3 experimental areas
30 m focal length mirror for electron LWFA at 10 PW

Target Laboratory

Deposition techniques - UHV e-beam evaporation

- UHV RF/DC sputtering - spin coating

Structuring /patterning techniques - optical lithography

- reactive ion etching - Ar ion milling

- Characterization
- SEM (EDS / EBSD / EBL)
- optical profilometer
- AFM
- XRD
- optical microscope

- Plasma (O2, Ar, SF6) **Cleaning methods** - Ion beam (Ar) - thermal treatments

ELI–NP Gamma Beam System Principles

Gamma-rays from Inverse Compton Scattering

photon scattering on highly relativistic electrons ($\gamma \gg 1$) the most efficient frequency amplifier

$$E_g \gg 4 \times g_e^2 \times E_L$$

Strong forward focusing of the scattered photons

'Photon accelerator'

Nuclear Photonics with Gamma Beams

γ

Fundamental Research

Nuclear Resonance Fluorescence Nuclear Astrophysics (γ,p) (γ,α) Photonuclear Reactions (γ,n) Photofission & Studies of Exotic Nuclei

Applications

Gamma Imaging Material Science with Positrons Medical Radioisotopes Production

R&D Gamma Beam Diagnostics Detectors Gamma Beam Delivery and Diagnostics

Broad International Collaboration Germany, USA, Japan, Italy, Hungary, France, Poland, Belgium, Vietnam, Switzerland, UK, Russia, Israel, China, ...

ELIADE and ELIGANT

NRF Applications: Non-destructive investigation

Aim: Use the gamma beam as a probe to study the structural properties and the elemental composition of industrial objects

- A. Active interrogation Nuclear Resonance Fluorescence
- B. High resolution radiography and tomography imaging

Nuclear fuel¹

¹nrc.gov; ²M. N. Lakshmanan et al. Nucl. IEEE Trans. Med Imag. 33, 546 (2014)

Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future!"

