

The fundamental role of the nanoscale materials characterization in the automotive industry

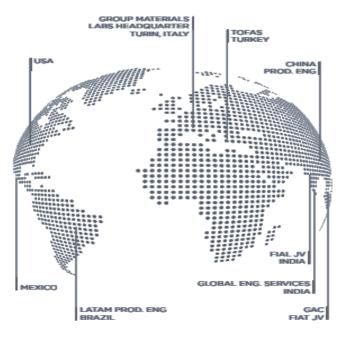
CRF- Group Materials Labs

Nello Li Pira, Physical Analysis Department Manager, Material Manager +39 366 7830 932, nello.lipira@crf.it

- I. Main drivers and targets for novel components
- II. Where and Why materials integration: need a new approach in characterization
- III. Three main examples of characterization improvements:
 - I. Optical finishing
 - II. Embedded electronics
 - III. Multi-materials and miniaturization
- IV. Conclusions

Mission

To develop and transfer innovative powertrains, vehicle systems & features, materials, processes and methodologies together with innovation expertise in order to improve the competitiveness of FCA products


To represent FCA in European and National collaborative research programs, joining pre-competitive projects and promoting networking actions

To support FCA in the protection and enhancement of intellectual property

Group Materials Labs: worldwide operations

900+

MATERIAL ANALYSIS EQUIPMENTS

350

QUALIFIED RESOURCES AS ENGINEERS, CHEMISTS, PHYSICIST AND MATHEMATICIANS

65 RESEARCH PROJECTS

50 YEARS EXPERIENCE

28 SUBJECT AREAS

16 RESEARCH LABORATORIES

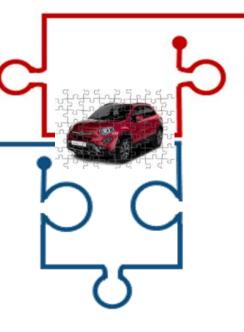
ALL OVER THE WORLD

5 TECHNICAL DEPARTMENTS

27 COMPETENCE CENTERS

Started on May 1st 2010HeadcountEU 193 | WW 350LocationsEU 9 | WW 16

Assure up-to dated **competences**


Share best practices

Assure equipment sharing and saturation Efficient labs activities

DECOUPLED Innovative Actions

- Research
- Innovation
- Methodologies
- Materials application feasibility
- Materials characterization
- Materials environmental issues

COUPLED Activities on Products

Product Development:

- Materials engineering
- Materials Testing on components/vehicle
- Failure analysis

Product in production:

- Failure analysis
- Product materials compliance

Automotive Brands

DECOUPLED: National and International Collaborative

Research projects examples

- H2020
- M-Eranet
- KIC RawMaterials

Hub of Application Laboratories for Equipment Assessment in Laser Based Manufacturing

Thermo-plastically deformable circuits for embedded randomly

shaped electronics

Development of smart machines, tools and processes for the precision synthesis of nanomaterials with tailored properties for Organic Electronic

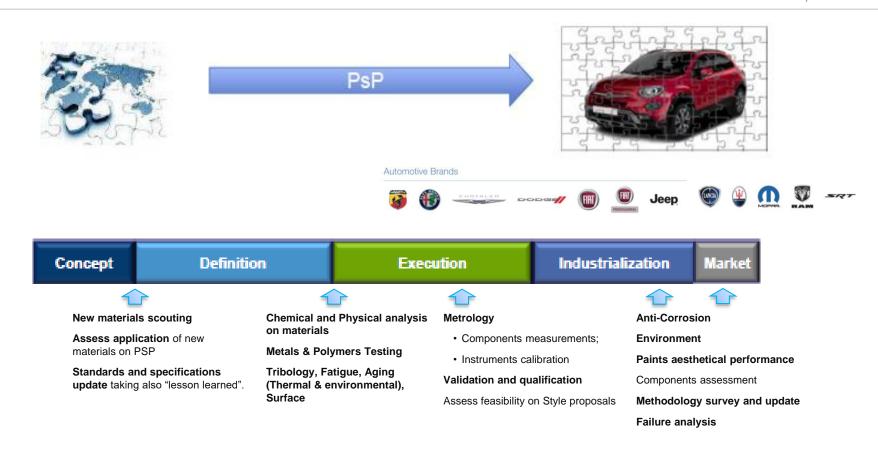
Noinolinan

Multiscale modelling and characterization to optimize the manufacturing processes of Organic Electronics materials and devices

HORIZON 2020

Light Emitting Diode - Direct patterning

MIcro QD-LED/OLED DIrect micro patterning


Smart in-line metrology and control for boosting the yield and quality of highvolume manufacturing of Organic Electronics

High-Power Ultrafast LaSErs using Tapered Double-Clad Fibre

COUPLED: Brand Product Development

- I. Main drivers and targets for novel components
- II. Where and Why materials integration: need a new approach in characterization
- III. Three main examples of characterization improvements:
 - I. Optical finishing
 - II. Embedded electronics
 - III. Multi-materials and miniaturization
- IV. Conclusions

Every day our cars are being coming more like ...

Movable living rooms:

- Entertainment
- Relaxing
- Autonomous Driving
- ...

Movable batteries:

.

. . .

- Battery Electric Vehicle
- Tesla model S: 100kWh
- Nissan Leaf to Home

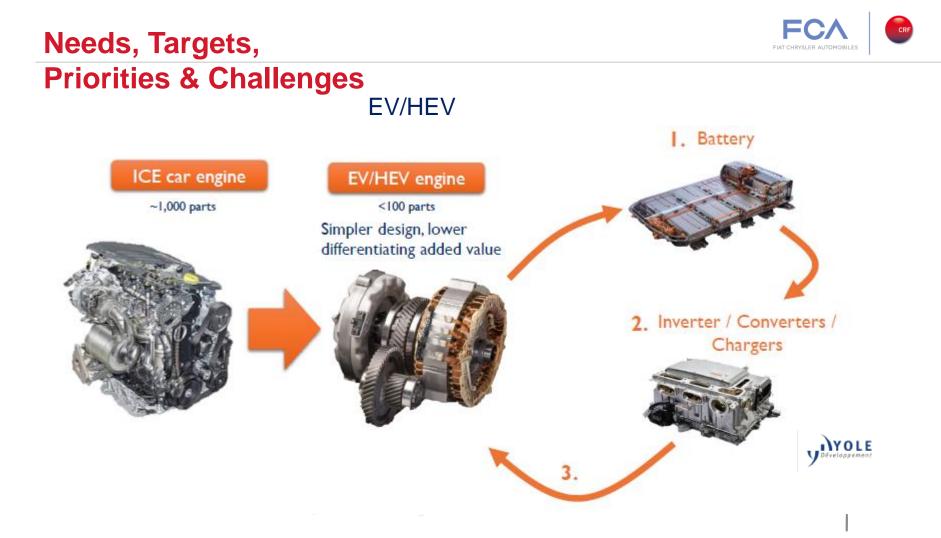
Movable Computers:

- Autonomous driving
- ADAS
- Cameras
- RADAR
- LIDAR

. . .

Movable smatphone:

- IoT
- Large area infotainment
- Entertainment devices
- Connectivity
- Touch

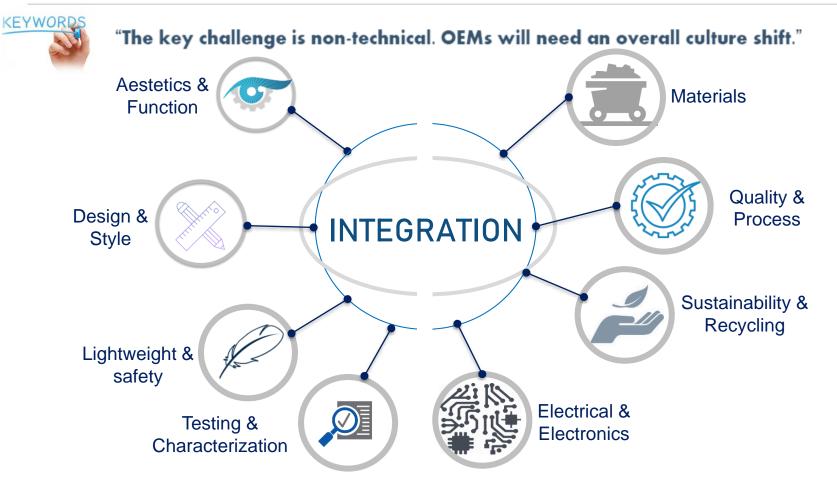

Interior & HMI

Materials:

- Bulk structural materials
- Coatings
- Resins

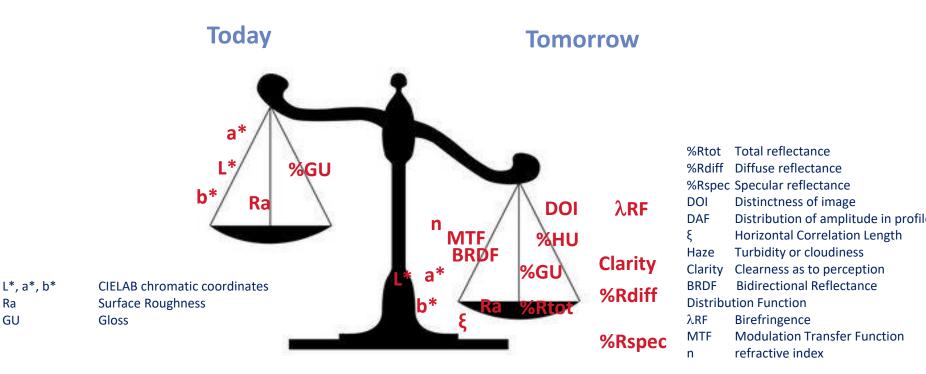
Functions (as electronics):

- Cabling
- Displaying
- Connectivity



Functional Active Materials:

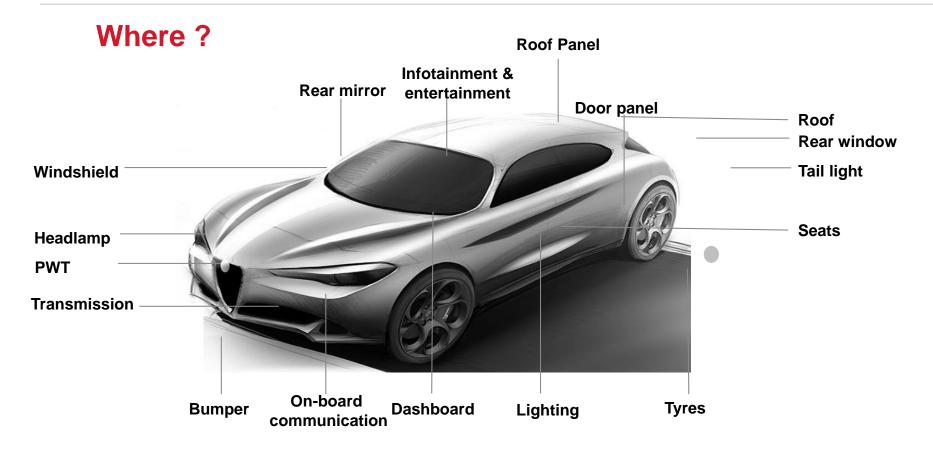
- Embedded Organic Electronics
- Adaptive sensoring
- Data communication controls



Ra

GU

New paradigm in <u>characterization</u> is needed (the case of Optical materials)



- I. Main drivers and targets for novel components
- II. Where and Why materials integration: need a new approach in characterization
- III. Three main examples of characterization improvements:
 - I. Optical finishing
 - II. Embedded electronics
 - III. Multi-materials and miniaturization
- IV. Conclusions

Optical finishing

Description

+500 mm

+300 mm

-500 mm

-300 mm

0

1000 mm

300 mm

• Displays exposed to sunlight are hard to read due to glare.

- Antennas and embedded communication
- Transparent materials for EM transmission
- Reflection issues to be managed on glass/plastic surface
- Fingerprinting issues

Effect	 Read-ability Clarity of the projected images Read-ability, visibility, blur, sparkling Mura effect 	= preferred MRR installation areas = acceptable MRR installation areas = not recommendable MRR installation areas = not allowed MRR installation areas
Development needs	 New coatings development AntiGlare AG AntiReflective AR Antifingerprint AF Conductive coating and plating Definition of standard with EE Ergonomy 	APPS the second se

• • Birelfanitiegenatespeictkions

Materials: optical finishing

Optical finishing: AntiGlare and Clarity (Haze)

Where:

Bidirectional reflectance distribution function

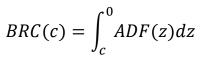
Bidirectional Trasmittance distribution function

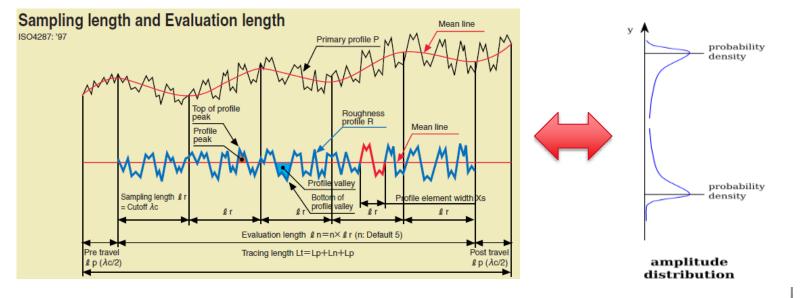
Rt is total reflection, **Rs** Specular Reflection, **Rd** Diffuse reflection **Tt** Total Trasmittance, **H** Haze and **C** Clarity

Haze and Clarity

$$\ \ \, \text{Haze:} \ \ \, T^{90^\circ}_{d,2.5^\circ} = \frac{I^{90^\circ}_{d,2.5^\circ}}{I_i} \ \ \, \rightarrow \ \ \, H = \frac{T^{90^\circ}_{d,2.5^\circ}}{T_t}$$

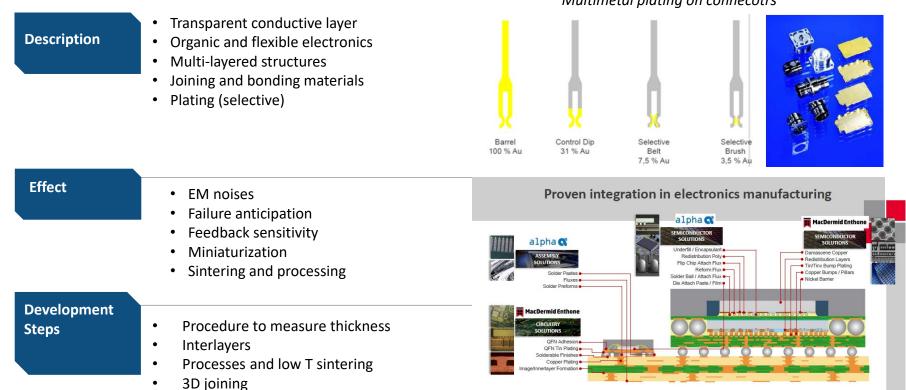
- Clarity:
$$T_{d,0^\circ}^{0.1^\circ} = \frac{I_{d,0^\circ}^{0.1^\circ}}{I_i} \ \rightarrow \ C = \frac{T_{d,0^\circ}^{0.1^\circ}}{T_t}$$




Optical finishing: sparkling

- Same Ra (Arithmetic mean of the absolute ordinate values Z(x) within a sampling length) for surfaces of widely different profiles
- Horizontal Correlation Length (ξ) and Amplitude Density Function (ADF) give information about the material and void volumes characterizing the surface topography

Average Roughness: $R_a = \frac{1}{l} \int_0^l |z(x)| dx$



Embedded electronics

A Platform Specialty Products Company

MacDermid Alpha 💦

• Definition of new EE standards

Multimetal plating on connecotrs

Advanced electronic testing \rightarrow cross section analysis

CRF-GM

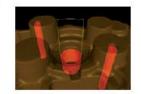
Supporting for product development of advance cross section analysis Section by Focused Ion Beam Microscopy FIB Soldering \rightarrow Cu thermal dissipater on substrate Sn/Sb \rightarrow Tin/Antimony Ni/ zona1 zon zona3 Zona 1: lega Sn/Sb Zona 2: Intermetallico di forma esagonale Sn/Cu/Ni zona Zona 3: dissipatore in Cu Intermetallic migration within substrate Zona 4: Layer di Ni con formazione di intermetallici con forma aciculare Sn/Ni, structure P non è stato rilevato

Multi-materials/miniaturized components

• Miniaturized connections

Description

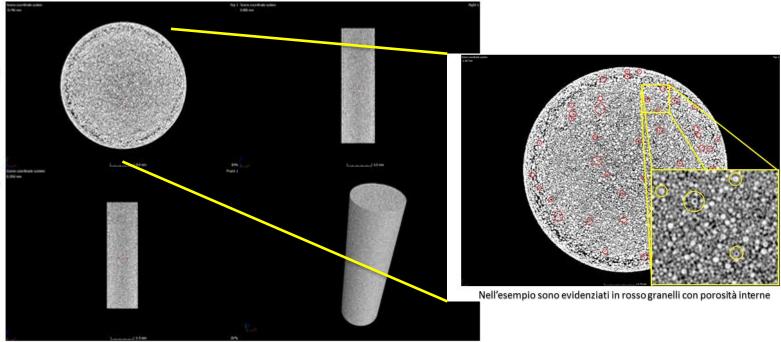
- Miniaturized sensors
- Multi-layered multi-materials
- Additive manufacturing powders
- Electrodes and electrolytes for batteries


EffectFailures anticipationCustom components manufacturing

Miniaturization

Development Steps

- Non-destructive testing
- Geometrical and metrological reconstructions
- Definition of new standards



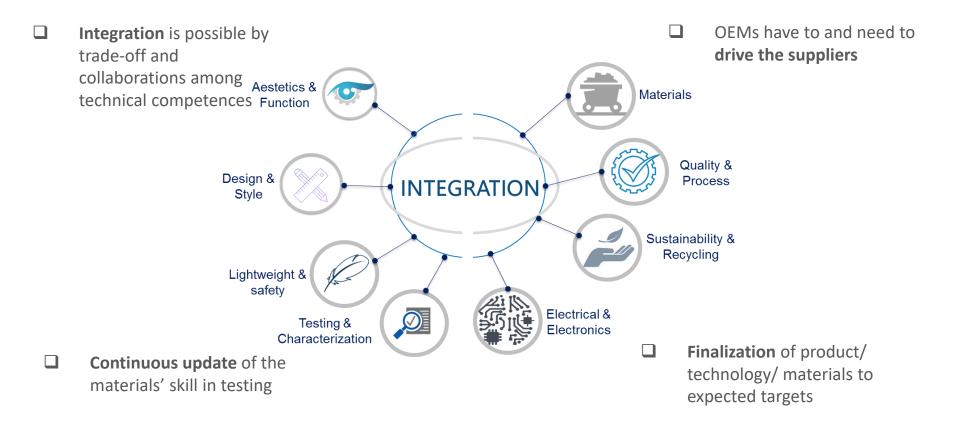
CTS Computer Tomography Scanning advanced analyis - Case AMFCA

Caselell'Additive Manufacturing è fondamentale la qualità delle polveri

> Esempio: analisi tomografica di un <u>set di polveri</u> con una **risoluzione a** 10 µm

Controllo Preventivo Polveri

Per gentile concessione del Sig. Leone Politecnico di Torino Servizi di scansione con Tomografia Assiale Computerizzata (TAC)



- I. Main drivers and targets for novel components
- II. Where and Why materials integration: need a new approach in characterization
- III. Three main examples of characterization improvements:
 - I. Optical finishing
 - II. Embedded electronics
 - III. Multi-materials and miniaturization

IV. Conclusions

Conclusions & wrap-up

New paradigm in characterization is needed

Two steps of characterization:

Characterization clusters

- 1. Materials Analysis
- 2. Components Analysis

Characterization methodologies :

- 1. Chemical
- 2. Mechanical
- 3. Photo-electro physical
- 4. Interface and superficial
- 5. Environmental and aging

RF	Main characterization analysis					
Foundry mmon		Materials			Components	
Chemicals & Elements	•XRD •EDS •Raman •ICP-MS •TERS		•EDS •Raman •XRD •VPD-ICP-I •EDS •Raman •XRD		-Corrosion ∙Humidity •Temperature	
Mechanical	•Tensile stress •Traction •Ball test			ess maping	•Tensile stress •Traction •Ball test	
Photo- Electro Physical	-Ultrasonics -IR -Penetrating liquid -Endoscopic -Radiography	-CTS -IR emissivity -Neutron -Electrical Failure Analysis -Dark current	•IR emissiv •XRD •Mercury p •Parametric Analyzer	•SRP robe •DLTS		
Physics & superficial	Tensile stress Ultrasounds IR Endoscopic Eddy current	spectroscopy	Contact pr Optical pr Micrograp XPS			
Environment & aging			•Wear •Abrasion		•UV exposure •Humidity •Temperature •Operative endurance	

Thank you

nello.lipira@crf.it , Mob. +39 366 78 30932